Mathematical Analysis and Finite Element Strategy for 3d Numerical Simulation of Navier Stokes Equations in Thin Domains
نویسنده
چکیده
In this lecture, we will particularly analyze the effect of the shallowness on the Navier Stokes equations, together with anisotropic eddy viscosities. We will derive as an asymptotic model the hydrostatic approximation of the Navier Stokes equations. We will present a stable mixed 3D-FEM discretization, which allows for the computation of the 3D-velocity as a whole. Let us emphasize that vertical velocities are not post-processed as in most circulation models, but computed simultaneously.
منابع مشابه
Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل3d Adaptive Finite Element Method for a Phase Field Model for the Moving Contact Line Problems
In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [1]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm....
متن کاملNumerical Simulation of Turbulent Bubbly Flows
A mathematical model for turbulent gas-liquid flows with mass transfer and chemical reactions is presented and a robust solution strategy based on nested iterations is proposed for the numerical treatment of the intricately coupled PDEs. In particular, the incompressible Navier-Stokes equations are solved by a discrete projection scheme from the family of Pressure Schur Complement methods. Nove...
متن کامل